THE REACTION OF 2,2-DIMETHYL-4-LITHIO-1,3-OXATHIANE 3,3-DIOXIDE. GENERAL SYNTHESIS OF γ -HYDROXYKETONES Kaoru FUJI, * Manabu NODE, and Yoshihide USAMI Institute for Chemical Research, Kyoto University, Uji, Kyoto 611 Reactions of 2,2-dimethyl-4-lithio-1,3-oxathiane 3,3-dioxide (2) with alkyl halides and carbonyl compounds proceed smoothly to give 4-substituted heterocycles. A general synthesis of γ -hydroxyketones from aldehydes utilizing 2 is described. Synthetic potentials of sulfonyl carbanions have been well recognized and reviewed extensively. 1,2) As a part of our program for developing the synthetic utility of 1,3-oxathianes, $^{3-7}$) the reactivity of 4-lithio-derivative 2 derived from 2,2-dimethyl-1,3-oxathiane 3,3-dioxide (1) 8) toward electrophiles was examined. Here we describe the reaction of a sulfonyl anion 2 with halides or carbonyl compounds giving substitution products or addition products, respectively, and the application to the synthesis of Y-hydroxy ketones. 2,2-Dimethyl-1,3-oxathiane⁹⁾ was easily oxidized with <u>m</u>-chloroperbenzoic acid to afford the corresponding dioxide 1 in 82% yield. The sulfonyl anion 2 generated at -78 °C with <u>n</u>-butyl lithium provides high yields of 4-substituted sulfones on treatment with electrophiles. The results are compiled in Table 1. Not surprisingly, 1,2-addition products were obtained exclusively, when α , β -unsaturated ketones were employed¹⁰⁾ (runs 7,8 in Table 1). On the other hand, α , β -unsaturated esters gave 1,4- adducts mainly (runs 9, 10 in Table 1). Methyl cinnamate afforded the 1,4-adduct 8 and an α , β -unsaturated ketone 9, which was obviously derived from <u>in situ</u> desulfonylation of 14 formed by the 1,2-addition. Addition of 2 to aldehydes yielded secondary alcohols 10 - 13. The crude ketones obtained by the Jones oxidation of alchols 10 - 13 were immediately treated with silica gel in hexane-ethyl acetate to afford γ -hydroxy ketones 15 - 18, respectively. Although γ -hydroxypropyl ketones are versatile building blocks not only for the synthesis of 1,4-dicarbonyl compounds but also for the synthesis of α -alkylated prolines, 11) few general methods for the syntheses of this class of 962 Chemistry Letters, 1986 compounds in the literature. $^{12,13)}$ This process provides a new method for the preparation of γ -hydroxy ketones from the corresponding aldehydes with three carbon unit elongation, and also reveals that 2,2-dimethy-1,4-lithio-1,3-oxathiane 3,3-dioxide (2) can be used as a γ -hydroxypropyl anion equivalent. Table 1. The Reaction of 2 with electrophiles | Run | Electrophile | Product | Yield/% | Run | Electrophile | | Product | Yield/% | |-----|---------------------------------|-----------------------|------------------|-----|---------------------------------------|----|---|------------------| | 1 | CD3COOD | 3(R=D) | 79 | 9 | Me00C | 2 | MeOOCCH2CHKMe | 62 ^{a)} | | 2 | CH3I | 3(R=CH ₃) | 83 | | | | | a) | | 3 | C ₂ H ₅ I | 3(R=C2H5) | 80 | 10 | Me00C Ph | 8€ | MeOOCCH ₂ CHCPh | 60 ^{a)} | | 4 | TMSC1 | 3(R=TMS) | 81 | | | 9 | PhCH=CHC(CH ₂) ₃ 0 | н 16 | | 5 | PhCH ₂ C1 | $3(R=PhCH_2)$ | 68 | | _ | ~ | | | | 6 | ∑ =0 | 4 XOH | 87 | 11 | Сно | 10 | CHK _{OOD} | 80 ^{a)} | | | | ~ __\b) | | 12 | с ₅ н ₁₁ сно | IJ | C ₅ H ₁₁ CH <oh< td=""><td>86^{a)}</td></oh<> | 86 ^{a)} | | 7 | ─ | 5 CNDD | 93a) | 13 | (CH ₃) ₂ CHCHO | 12 | (CH ₃) ₂ CHCHCOH | 74 ^{a)} | | 8 | | € → OH | 88 ^{a)} | 14 | PhCHO | 13 | PhCH <dod< td=""><td>68^{a)}</td></dod<> | 68 ^{a)} | a) A mixture of diastereomers. ## References - 1) P. D. Magnus, Tetrahedron, 33, 2019 (1977). - 2) L. Field, Synthesis, 1978, 713. - 3) K. Fuji, M. Ueda, and E. Fujita, J. Chem. Soc., Chem. Commun., <u>1977</u>, 814. - 4) K. Fuji, M. Ueda, K. Sumi, and E. Fujita, Tetrahedron Lett., 22, 2005 (1981). - 5) K. Fuji, M. Ueda, and E. Fujita, J. Chem. Soc., Chem. Commun., 1983, 49. - 6) K. Fuji, M. Ueda, K. Sumi, K. Kajiwara, E. Fujita, T. Iwashita, and I. Miura, J. Org. Chem., <u>50</u>, 657 (1985). - 7) K. Fuji, M. Ueda, K. Sumi, and E. Fujita, J. Org. Chem., <u>50</u>, 662 (1985). - 8) Satisfactory analytical (elemental analysis or high-resolution mass spectrum) and spectroscopic data were obtained for all new compounds. - 9) K. Pihlaja and P. Pasanen, Acta Chem. Scand., $\underline{24}$, 2257 (1970). - 10) P. J. Kocienski, B. Lythgoe, and S. Ruston, J. Chem. Soc., Perkin Trans. 1, 1978, 829. - 11) J. J. Ellington and I. L. Honigberg, J. Org. Chem., 39, 104 (1974). - 12) K. Yoshioka, G. Goto, and K. Hiraga, Yakugaku Zasshi, 93, 1183 (1973). - 13) M. Larcheveque, G. Valette, T. Cuvigny, and H. Normant, Synthesis, 1975, 256. (Received March 28, 1986)